Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Given the importance of climate in shaping species’ geographic distributions, climate change poses an existential threat to biodiversity. Climate envelope modeling, the predominant approach used to quantify this threat, presumes that individuals in populations respond to climate variability and change according to species-level responses inferred from spatial occurrence data—such that individuals at the cool edge of a species’ distribution should benefit from warming (the “leading edge”), whereas individuals at the warm edge should suffer (the “trailing edge”). Using 1,558 tree-ring time series of an aridland pine (Pinus edulis) collected at 977 locations across the species’ distribution, we found that trees everywhere grow less in warmer-than-average and drier-than-average years. Ubiquitous negative temperature sensitivity indicates that individuals across the entire distribution should suffer with warming—the entire distribution is a trailing edge. Species-level responses to spatial climate variation are opposite in sign to individual-scale responses to time-varying climate for approximately half the species’ distribution with respect to temperature and the majority of the species’ distribution with respect to precipitation. These findings, added to evidence from the literature for scale-dependent climate responses in hundreds of species, suggest that correlative, equilibrium-based range forecasts may fail to accurately represent how individuals in populations will be impacted by changing climate. A scale-dependent view of the impact of climate change on biodiversity highlights the transient risk of extinction hidden inside climate envelope forecasts and the importance of evolution in rescuing species from extinction whenever local climate variability and change exceeds individual-scale climate tolerances.more » « less
-
Abstract AimBiogeographers have used three primary data types to examine shifts in tree ranges in response to past climate change: fossil pollen, genetic data and contemporary occurrences. Although recent efforts have explored formal integration of these types of data, we have limited understanding of how integration affects estimates of range shift rates and their uncertainty. We compared estimates of biotic velocity (i.e. rate of species' range shifts) using each data type independently to estimates obtained using integrated models. LocationEastern North America. TaxonFraxinus pennsylvanicaMarshall (green ash). MethodsUsing fossil pollen, genomic data and modern occurrence data, we estimated biotic velocities directly from 24 species distribution models (SDMs) and 200 pollen surfaces created with a novel Bayesian spatio‐temporal model. We compared biotic velocity from these analyses to estimates based on coupled demographic‐coalescent simulations and Approximate Bayesian Computation that combined fossil pollen and SDMs with population genomic data collected across theF. pennsylvanicarange. ResultsPatterns and magnitude of biotic velocity over time varied by the method used to estimate past range dynamics. Estimates based on fossil pollen yielded the highest rates of range movement. Overall, integrating genetic data with other data types in our simulation‐based framework reduced apparent uncertainty in biotic velocity estimates and resulted in greater similarity in estimates between SDM‐ and pollen‐integrated analyses. Main ConclusionsBy reducing uncertainty in our assessments of range shifts, integration of data types improves our understanding of the past distribution of species. Based on these results, we propose further steps to reach the integration of these three lines of biogeographical evidence into a unified analytical framework.more » « less
An official website of the United States government
